Penalty Constraints and Kernelization of M-Estimation Based Fuzzy C-Means
نویسندگان
چکیده
A framework of M-estimation based fuzzy C–means clustering (MFCM) algorithm is proposed with iterative reweighted least squares (IRLS) algorithm, and penalty constraint and kernelization extensions of MFCM algorithms are also developed. Introducing penalty information to the object functions of MFCM algorithms, the spatially constrained fuzzy c-means (SFCM) is extended to penalty constraints MFCM algorithms (abbr. pMFCM). Substituting the Euclidean distance with kernel method, the MFCM and pMFCM algorithms are extended to kernelized MFCM (abbr. KMFCM) and kernelized pMFCM (abbr. pKMFCM) algorithms. The performances of MFCM, pMFCM, KMFCM and pKMFCM algorithms are evaluated in three tasks: pattern recognition on 10 standard data sets from UCI Machine Learning databases, noise image segmentation performances on a synthetic image, a magnetic resonance brain image (MRI), and image segmentation of a standard images from Berkeley Segmentation Dataset and Benchmark. The experimental results demonstrate the effectiveness of our proposed algorithms in pattern recognition and image segmentation.
منابع مشابه
ADAPTIVE NEURO FUZZY INFERENCE SYSTEM BASED ON FUZZY C–MEANS CLUSTERING ALGORITHM, A TECHNIQUE FOR ESTIMATION OF TBM PENETRATION RATE
The tunnel boring machine (TBM) penetration rate estimation is one of the crucial and complex tasks encountered frequently to excavate the mechanical tunnels. Estimating the machine penetration rate may reduce the risks related to high capital costs typical for excavation operation. Thus establishing a relationship between rock properties and TBM pe...
متن کاملBilateral Weighted Fuzzy C-Means Clustering
Nowadays, the Fuzzy C-Means method has become one of the most popular clustering methods based on minimization of a criterion function. However, the performance of this clustering algorithm may be significantly degraded in the presence of noise. This paper presents a robust clustering algorithm called Bilateral Weighted Fuzzy CMeans (BWFCM). We used a new objective function that uses some k...
متن کاملSpatial Models for Fuzzy Clustering
A novel approach to fuzzy clustering for image segmentation is described. The fuzzy C-means objective function is generalized to include a spatial penalty on the membership functions. The penalty term leads to an iterative algorithm that is only slightly different from the original fuzzy C-means algorithm and allows the estimation of spatially smooth membership functions. To determine the stren...
متن کاملEstimation of Seigniorage Laffer curve in IRAN: A Fuzzy C-Means Clustering Framework
There are two sources for governments to raise their revenues. The first is the direct taxation levied on output, and the second is seigniorage. Seigniorage is also known as printing new money and is defined as the value of real resources acquired by the government through its power of sovereignty on its monopoly of printing money. The purpose of this paper is to examine the Laffer curve for Se...
متن کاملUsing fuzzy c-means clustering algorithm for common lecturer timetabling among departments
University course timetabling problem is one of the hard problems and it must be done for each term frequently which is an exhausting and time consuming task. The main technique in the presented approach is focused on developing and making the process of timetabling common lecturers among different departments of a university scalable. The aim of this paper is to improve the satisfaction of com...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1207.4417 شماره
صفحات -
تاریخ انتشار 2012